Schwarz symmetric solutions for a quasilinear eigenvalue problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

An Eigenvalue Problem for a Non-bounded Quasilinear Operator

In this paper we study the eigenvalues associated with a positive eigenfunction of a quasilinear elliptic problem with an operator that is not necessarily bounded. For that, we use the bifurcation theory and obtain the existence of positive solutions for a range of values of the bifurcation parameter.

متن کامل

Symmetric Eigenvalue Problem: Tridiagonal Reduction

Our ultimate goal in this project is to solve the symmetric eigenvalue problem on symmetric multiprocessor machines more quickly than existing implementations. In order to achieve this goal, we have chosen to implement an improved multithreaded version of a specific phase of the current best algorithmic approach, namely the reduction of a full symmetric matrix to banded form using two-sided ort...

متن کامل

The symmetric eigenvalue complementarity problem

In this paper the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed. It is shown that the symmetric (EiCP) is equivalent to finding an equilibrium solution of a differentiable optimization problem in a compact set. A necessary and sufficient condition for solvability is obtained which, when verified, gives a convenient starting point for any gradient-ascent loc...

متن کامل

Multiplicity of Symmetric Solutions for a Nonlinear Eigenvalue Problem in R

In this paper, we study the nonlinear eigenvalue field equation −∆u+ V (|x|)u+ ε(−∆pu+W ′(u)) = μu where u is a function from Rn to Rn+1 with n ≥ 3, ε is a positive parameter and p > n. We find a multiplicity of solutions, symmetric with respect to an action of the orthogonal group O(n): For any q ∈ Z we prove the existence of finitely many pairs (u, μ) solutions for ε sufficiently small, where...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations

سال: 2016

ISSN: 1417-3875

DOI: 10.14232/ejqtde.2016.1.89